Dismantling PACS: separating image viewing from the data storage and sharing

Bernard Gibaud

MediCIS, U1099 Inserm, LTSI Faculté de médecine, Rennes bernard.gibaud@univ-rennes1.fr

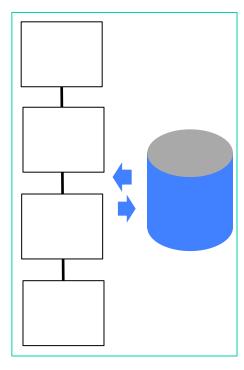
Overview

- Introduction
- Key factors driving PACS' evolution
- Trend: separating storing/archiving and viewing / processing components
- Added value and related issues
- Conclusion

Introduction

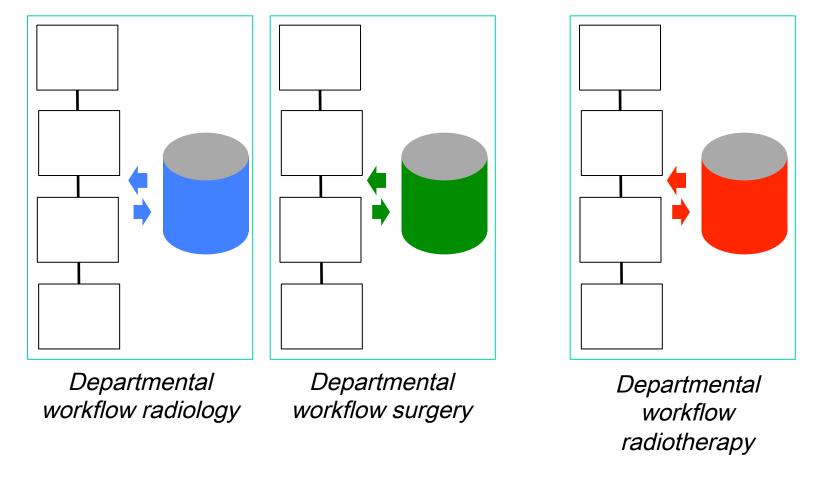
- PACS has become a mature technology, widely implemented, but is still evolving
- Regarding PACS evolution, one should distinguish between
 - the evolution of PACS products offer
 - and the evolution of local PACS settings, which depends on local choices, local history (existing infrastructure), continuity of service, ...
 and, ultimately, on the PACS products offer.

Key factors driving PACS evolution


Four major factors

- Evolution of
 - Functional needs
 - Basic IT technology
 - Interoperability standards
 - Economical context

Evolution of functional needs (1/4)


- 1. Organize information processing according to explicit workflows,
 - at a departmental level
 - at the enterprise-level
- Why?
 - Rationalizes activity
 - Relies on an explicit model of activities
 - Facilitates quality assurance
 - Automates repetitive tasks

Ex: Departmental workflow radiology

Evolution of functional needs (2/4)

- 2. Support of many new domains of imaging
 - Endoscopy
 - Dentistry
 - Ophthalmology
 - Pathology
 - Radiotherapy
 - Surgery
 - ...
- besides the traditional one: radiology, cardiology, oncology

- does not facilitate reusing data from other domains
- however, it can sometimes be achieved
 - either automatically (can be part of the workflow)
 - or under user control

Evolution of functional needs (3/4)

- 3. Cross-enterprise data communication, e.g.
 - importation of outpatient images (instead of CDs)
 - open PACS to telemedicine and health care networks
 - Collaborative decision in domains such as
 - Oncology
 - Cardiac surgery
 - Diabetes
- As well as clinical and translational research
 - Not supported by commercial PACS

Evolution of functional needs (4/4)

- 4. Need of data migration
 - in case of decommissioning and renewal of PACS
 - Many problems with non-standard items such as
 - key images,
 - image annotations,
 - ECG,
 - non standard structured reports
 - Need to minimize migration costs

Evolution of basic technology

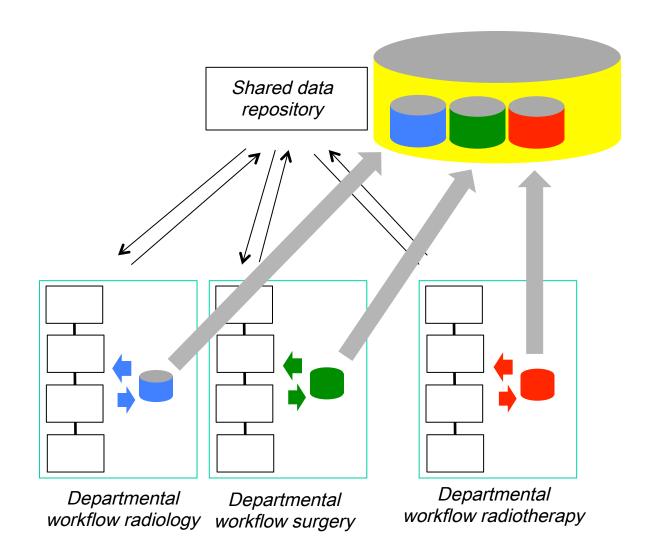
- Basic communication technology
 - high speed networking, both intranet and internet
 - web services and Service Oriented Architecture (SOA)
- Data storage
 - Increase of capacity of hard disks
 - Decrease of cost
 - Attractive cloud storage offer
- Data processing
 - Extremely flexible
 - Local processing (GPU) or remote processing

Evolution of interoperability standards

- General
 - e.g. XML (syntax), SOAP (protocol)
- Domain specific
 - DICOM: New objects and services
 - e.g. Whole Slide Imaging IOD, New RT objects
 - WADO-RS
 - IHE: Cross-enterprise document Sharing (XDS.b, XDS-I.b)
 Teaching files and clinical trials export (TCE)
 - HL7 CDA

Evolution of economical context

- Need to reduce investment and operating costs
 - Mutualizing resources
 - Economy of scale (data storage)
 - Teleradiology / telemedicine
 - Rationalizing the use of resources
 - Promote common environments (one size fits all)
 - Encourage outsourcing, e.g. from Storage Service Providers
 - Scalable service-based solutions (rather than investment)


Heavy trend

Is to try addressing those needs through Dismantling *image viewing* from *storage* and sharing

- What does it mean?
 - Avoid storage of patients' data (and especially long term storage) in departmental silos
 - Prefer shared enterprise-wide
 or cross-enterprise wide data repositories

Toward « Vendor Neutral Archive »

Introducing a *shared data repository*

Vendor neutral archive (1/2)

- Medical device, supporting
- the management of images and associated data
 - according to a patient-centric approach
 - including
 - DICOM Presentation States
 - DICOM Structured Reports,
 - significant images (DICOM KOS)
 - multimedia documents (e.g. native MPEG)
 - storage, query/retrieval
 - life cycle (i.e. retention, deletion)
 - incl. patient privacy

Vendor neutral archive (2/2)

- •
- based on open standards (DICOM, IHE)
 - enabling true vendor-independence
- at department, enterprise, regional level
- scalable (size of images, studies, etc.)
- robust w.r.t. replacement of domain specific data management systems (architecture, protocols, formats)

Functional Added value

- easier data sharing at enterprise or cross-enterprise level
 - Comprehensive view of patient EMR
 - Homogeneous management of archiving (e.g. retention duration)
 - Better security (e.g. disaster recovery)
- easier data sharing between collaborating institutions
 - Teleradiology / telemedicine
 - Healthcare networks
 - Research (clinical and translational)
- easier migration in case of departmental system renewal

- Economical added value
 - Economy of scale (for data storage)
 - Common standards-based environment (no ad-hoc developments)

- Interoperability standards
 - IHE XDS.b, XDS-I.b
 - DICOM Classical Q&R
 - DICOM WADO
 - DICOM RESTful services WADO-RS
- Coming soon
 - S163: DICOM RESTful services STOW-RS

Moving to shared enterprise-wide storage

- Difficulties: 1. not trivial migration of data
 - Non standard objects (e.g. key images)
 - Non standard use of DICOM tags
 - Use of proprietary tags, triggering specific behaviour,
 e.g. use of hanging protocols
- « bidirectional (DICOM) tag morphing »
 - presented as a way to make any pair of departmental PACS interoperate

(I am very sceptical)

Moving to shared enterprise-wide storage

- Difficulties: 2. data administration
 - Archives administrated by the institution's IT department (rather than the PACS vendor)
 - Access control managed centrally
 - Requires a consistent architecture and policy of security

Moving to shared enterprise-wide storage

- Difficulties: 3. interfacing with workstations
 - in departmental PACS the interfacing between the image manager / image archive and the workstation often relies on non-standard protocols (for the sake of performance and flexibility)
 - so, query/retrieval from/to a shared repository may be non trivial
 - in pratice, the deployment of the shared repository may complement but not necessarily replace legacy departmental data management

Conclusion / Summary

 PACS still undergo a strong evolution as a result of changes in functional needs, available technology and standards and economical context

- Dismantling image viewing from storage and sharing
 - seems appealing and solves some of the pending issues
 - however, it is essentially a repository of documents, which semantics are defined by the standards involved (DICOM+IHE)

Some references

- Royal College of Radiologists. Guidelines and standards for implementation of new PACS/RIS solutions in the UK (2011)
- Oosterwijk H (O Tech). What is a VNA, anyway
- Wikipedia. Article on Vendor Neutral Archive
- Bellon E. et al. Trends in PACS architecture. EJR 78 (2011) 199-204
- IHE: http://www.ihe.net/technical_framework
- DICOM standard: http://medical.nema.org/